X 9 simplified

X 9 simplified DEFAULT

Simplified form of $\left(6-\frac{2}{x}\right)\div\left(9-\frac{1}{x^2}\right)$.

Tried this one a couple of times but can't seem to figure it out.

I am trying to simplify the expression:

$$\left(6-\frac{2}{x}\right)\div\left(9-\frac{1}{x^2}\right)$$

So my attempt at this is:

$$=\bigg(\dfrac{6x}{x}-\dfrac{2}{x}\bigg)\div\bigg(\dfrac{9x^2}{x^2}-\dfrac{1}{x^2}\bigg)$$

$$=\bigg(\dfrac{6x-2}{x}\bigg)\div\bigg(\dfrac{9x^2-1}{x^2}\bigg)$$

$$=\dfrac{6x-2}{x}\cdot\dfrac{x^2}{9x^2-1}$$

$$=\dfrac{(6x-2)(x^2)}{(x)(9x^2-1)}$$

$$=\dfrac{6x^3-2x^2}{9x^3-x}$$

This is the part that I get stuck at. I can't decide what to factor out: $$=\dfrac{x(6x^3-2x^2)}{x(9x^3-x)}$$

$$=\dfrac{(6x^2-2x)}{(9x^2-1)}$$

Edit, missed a difference of squares:

$$=\dfrac{2x^2(6x^3-2x^2)}{x(9x^3-x)}$$

$$=\dfrac{2x^2(3x-1)}{x(3x-1)(3x+1)}$$

Giving a final answer of: $$=\boxed{\dfrac{2x}{3x+1}}$$

$\endgroup$Sours: https://math.stackexchange.com/q/404280

110/9 is already in the simplest form. It can be written as 12.222222 in decimal form (rounded to 6 decimal places).

Steps to simplifying fractions

  1. Find the GCD (or HCF) of numerator and denominator
    GCD of 110 and 9 is 1
  2. Divide both the numerator and denominator by the GCD
    110 ÷ 1/9 ÷ 1
  3. Reduced fraction: 110/9
    Therefore, 110/9 simplified to lowest terms is 110/9.

MathStep (Works offline)

Download our mobile app and learn to work with fractions in your own time:
Android and iPhone/ iPad

Equivalent fractions: 220/18330/27550/45770/63

More fractions: 220/9110/18330/9110/27111/9110/10109/9110/8

Fractions Simplifier

Sours: https://answers.everydaycalculation.com/simplify-fraction/110-9
  1. Fireplace hashtags
  2. Nfl playoff ratings 2017
  3. Ctk 4000

Most Used Actions

\mathrm{simplify} \mathrm{solve\:for} \mathrm{expand} \mathrm{factor} \mathrm{rationalize}
Related »Graph »Number Line »Examples »

Our online expert tutors can answer this problem

Get step-by-step solutions from expert tutors as fast as 15-30 minutes. Your first 5 questions are on us!

In partnership with

You are being redirected to Course Hero

Correct Answer :)

Let's Try Again :(

Try to further simplify

 

Related

Number Line

Graph

Examples

simplify-calculator

simplify \frac{x^{2}-9}{x^{2}-3x}

en

Sours: https://www.symbolab.com/solver/simplify-calculator/simplify%20%5Cfrac%7Bx%5E%7B2%7D-9%7D%7Bx%5E%7B2%7D-3x%7D
Simplifying Expressions

Simplifying Expressions with Negative Exponents

Purplemath

Recall that negative exponents indicates that we need to move the base to the other side of the fraction line. For example:

(The "1's" in the simplifications above are for clarity's sake, in case it's been a while since you last worked with negative powers. One doesn't usually include them in one's work.)

In the context of simplifying with exponents, negative exponents can create extra steps in the simplification process. For instance:

  • Simplify the following expression:

The negative exponents tell me to move the bases, so:

Then I cancel as usual, and get:


When working with exponents, you're dealing with multiplication. Since order doesn't matter for multiplication, you will often find that you and a friend (or you and the teacher) have worked out the same problem with completely different steps, but have gotten the same answer in the end.

This is to be expected. As long as you do each step correctly, you should get the correct answers. Don't worry if your solution doesn't look anything like your friend's; as long as you both got the right answer, you probably both did it "the right way".


  • Simplify the following expression: (–3x–1y2)2

I can proceed in either of two ways. I can either take care of the squaring outside, and then simplify inside; or else I can simplify inside, and then take the square through. Either way, I'll get the same answer. To prove this, I'll show both ways.

 simplifying first: 

 squaring first: 

Either way, my answer is the same:


  • Simplify the following expression: (–5x–2y)(–2x–3y2)

Again, I can work either of two ways: multiply first and then handle the negative exponents, or else handle the exponents and then multiply the resulting fractions. I'll show both ways.

Either way, my answer is the same:

Neither solution method above is "better" or "worse" than the other. The way you work the problem will be a matter of taste or happenstance, so just do whatever works better for you.


  • Simplify the following expression:

The negative exponent is only on the x, not on the 2, so I only move the variable:


  • Simplify the following expression:

The "minus" on the 2 says to move the variable; the "minus" on the 6 says that the 6 is negative. These two "minus" signs mean entirely different things, and should not be confused.

I have to move the variable; I should not move the 6.


  • Simplify the following expression:

(3 x^(–2) y) / (xy)

I'll move the one variable with a negative exponent, cancel off the y's, and simplify:


URL: https://www.purplemath.com/modules/simpexpo2.htm

Sours: https://www.purplemath.com/modules/simpexpo2.htm

9 simplified x

5.1 Rules of Exponents

Learning Objectives

  1. Simplify expressions using the rules of exponents.
  2. Simplify expressions involving parentheses and exponents.
  3. Simplify expressions involving 0 as an exponent.

Product, Quotient, and Power Rule for Exponents

If a factor is repeated multiple times, then the product can be written in exponential formAn equivalent expression written using a rational exponent.. The positive integer exponentn indicates the number of times the basex is repeated as a factor.

For example,

Here the base is 5 and the exponent is 4. Exponents are sometimes indicated with the caret (^) symbol found on the keyboard: 5^4 = 5*5*5*5.

Next consider the product of and ,

Expanding the expression using the definition produces multiple factors of the base, which is quite cumbersome, particularly when n is large. For this reason, we will develop some useful rules to help us simplify expressions with exponents. In this example, notice that we could obtain the same result by adding the exponents.

In general, this describes the product rule for exponents; the product of two expressions with the same base can be simplified by adding the exponents.. If m and n are positive integers, then

In other words, when multiplying two expressions with the same base, add the exponents.

Example 1: Simplify: .

Solution:

Answer:

In the previous example, notice that we did not multiply the base 10 times itself. When applying the product rule, add the exponents and leave the base unchanged.

Example 2: Simplify: .

Solution: Recall that the variable x is assumed to have an exponent of 1: .

Answer:

The base could be any algebraic expression.

Example 3: Simplify: .

Solution: Treat the expression as the base.

Answer:

The commutative property of multiplication allows us to use the product rule for exponents to simplify factors of an algebraic expression.

Example 4: Simplify: .

Solution: Multiply the coefficients and add the exponents of variable factors with the same base.

Answer:

Next, we will develop a rule for division by first looking at the quotient of and .

Here we can cancel factors after applying the definition of exponents. Notice that the same result can be obtained by subtracting the exponents.

This describes the quotient rule for exponents; the quotient of two expressions with the same base can be simplified by subtracting the exponents.. If m and n are positive integers and , then

In other words, when you divide two expressions with the same base, subtract the exponents.

Example 5: Simplify: .

Solution: Divide the coefficients and subtract the exponents of the variable y.

Answer:

Example 6: Simplify: .

Solution:

Answer:

Now raise to the fourth power as follows:

After writing the base as a factor four times, expand to obtain 12 factors of 2. We can obtain the same result by multiplying the exponents.

In general, this describes the power rule for exponents; a power raised to a power can be simplified by multiplying the exponents.. Given positive integers m and n, then

In other words, when raising a power to a power, multiply the exponents.

Example 7: Simplify: .

Solution:

Answer:

To summarize, we have developed three very useful rules of exponents that are used extensively in algebra. If given positive integers m and n, then

Product rule:
Quotient rule:
Power rule:

Try this! Simplify: .

Answer:

Video Solution

(click to see video)

Power Rules for Products and Quotients

Now we consider raising grouped products to a power. For example,

After expanding, we have four factors of the product xy. This is equivalent to raising each of the original factors to the fourth power. In general, this describes the power rule for a product; if a product is raised to a power, then apply that power to each factor in the product.. If n is a positive integer, then

Example 8: Simplify: .

Solution: We must apply the exponent 7 to all the factors, including the coefficient, 2.

If a coefficient is raised to a relatively small power, then present the real number equivalent, as we did in this example: .

Answer:

In many cases, the process of simplifying expressions involving exponents requires the use of several rules of exponents.

Example 9: Simplify: .

Solution:

Answer:

Example 10: Simplify: .

Solution:

Answer:

Example 11: Simplify: .

Solution:

Answer:

Next, consider a quotient raised to a power.

Here we obtain four factors of the quotient, which is equivalent to the numerator and the denominator both raised to the fourth power. In general, this describes the power rule for a quotient; if a quotient is raised to a power, then apply that power to the numerator and the denominator.. If n is a positive integer and , then

In other words, given a fraction raised to a power, we can apply that exponent to the numerator and the denominator. This rule requires that the denominator is nonzero. We will make this assumption for the remainder of the section.

Example 12: Simplify: .

Solution: First, apply the power rule for a quotient and then the power rule for a product.

Answer:

In practice, we often combine these two steps by applying the exponent to all factors in the numerator and the denominator.

Example 13: Simplify: .

Solution: Apply the exponent 5 to all of the factors in the numerator and the denominator.

Answer:

Example 14: Simplify: .

Solution:

Answer:

It is a good practice to simplify within parentheses before using the power rules; this is consistent with the order of operations.

Example 15: Simplify: .

Solution:

Answer:

To summarize, we have developed two new rules that are useful when grouping symbols are used in conjunction with exponents. If given a positive integer n, where y is a nonzero number, then

Power rule for a product:
Power rule for a quotient:

Try this! Simplify: .

Answer:

Video Solution

(click to see video)

Zero as an Exponent

Using the quotient rule for exponents, we can define what it means to have 0 as an exponent. Consider the following calculation:

Eight divided by 8 is clearly equal to 1, and when the quotient rule for exponents is applied, we see that a 0 exponent results. This leads us to the definition of zero as an exponent; any nonzero base raised to the 0 power is defined to be 1., where :

It is important to note that is undefined. If the base is negative, then the result is still +1. In other words, any nonzero base raised to the 0 power is defined to be 1. In the following examples, assume all variables are nonzero.

Example 16: Simplify:

a.

b.

Solution:

a. Any nonzero quantity raised to the 0 power is equal to 1.

b. In the example , the base is 5, not −5.

Answers: a. 1; b. −1

Example 17: Simplify: .

Solution: It is good practice to simplify within the parentheses first.

Answer:

Example 18: Simplify: .

Solution:

Answer: 1

Try this! Simplify: and .

Answer: and

Video Solution

(click to see video)

Key Takeaways

  • The rules of exponents allow you to simplify expressions involving exponents.
  • When multiplying two quantities with the same base, add exponents: .
  • When dividing two quantities with the same base, subtract exponents: .
  • When raising powers to powers, multiply exponents: .
  • When a grouped quantity involving multiplication and division is raised to a power, apply that power to all of the factors in the numerator and the denominator: and .
  • Any nonzero quantity raised to the 0 power is defined to be equal to 1: .

Topic Exercises

Part A: Product, Quotient, and Power Rule for Exponents

Write each expression using exponential form.

1.

2.

3.

4.

5.

6.

Simplify.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Simplify.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Part B: Power Rules for Products and Quotients

Simplify.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91. The probability of tossing a fair coin and obtaining n heads in a row is given by the formula . Determine the probability, as a percent, of tossing 5 heads in a row.

92. The probability of rolling a single fair six-sided die and obtaining n of the same faces up in a row is given by the formula . Determine the probability, as a percent, of obtaining the same face up two times in a row.

93. If each side of a square measures units, then determine the area in terms of the variable x.

94. If each edge of a cube measures units, then determine the volume in terms of the variable x.

Part C: Zero Exponents

Simplify. (Assume variables are nonzero.)

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

Part D: Discussion Board Topics

110. René Descartes (1637) established the usage of exponential form: , , and so on. Before this, how were exponents denoted?

111. Discuss the accomplishments accredited to Al-Karismi.

112. Why is undefined?

113. Explain to a beginning student why .

Answers

1:

3:

5:

7:

9: −16

11: −27

13:

15:

17:

19:

21:

23:

25:

27:

29:

31:

33:

35:

37:

39:

41:

43:

45:

47:

49:

51:

53:

55:

57:

59:

61:

63:

65:

67:

69:

71:

73:

75:

77:

79:

81:

83:

85:

87:

89:

91:

93:

95: 1

97: −1

99: 1

101: −4

103:

105:

107: 1

109:

Sours: https://saylordotorg.github.io/text_elementary-algebra/s08-01-rules-of-exponents.html
6 Divided by 9 Simplified - ( 6/9 ) - Fractions Simplified

.

Now discussing:

.



379 380 381 382 383